Friday, June 25, 2010

List of equations in classical mechanics


Nomenclature
a = acceleration (m/s²)
g = gravitational field strength/acceleration in free-fall (m/s²)
F = force (N = kg m/s²)
Ek = kinetic energy (J = kg m²/s²)
Ep = potential energy (J = kg m²/s²)
m = mass (kg)
p = momentum (kg m/s)
s = displacement (m)
R = radius (m)
t = time (s)
v = velocity (m/s)
v0 = velocity at time t=0
W = work (J = kg m²/s²)
τ = torque (m N, not J) (torque is the rotational form of force)
s(t) = position at time t
s0 = position at time t=0
runit = unit vector pointing from the origin in polar coordinates
θunit = unit vector pointing in the direction of increasing values of theta in polar coordinates
Note: All quantities in bold represent vectors.]
Center of mass
Discrete case:



\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \sum_{i = 1}^{n} m_i \mathbf{s}_i
where n is the number of mass particles.
Continuous case:
\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \int \rho(\mathbf{s}) dV
where ρ(s) is the scalar mass density as a function of the position vector

Velocity

\mathbf{v}_{\mbox{average}} = {\Delta \mathbf{d} \over \Delta t}
\mathbf{v} = {d\mathbf{s} \over dt}


Acceleration

\mathbf{a}_{\mbox{average}} = \frac{\Delta\mathbf{v}}{\Delta t}
\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2}
  • Centripetal Acceleration
 |\mathbf{a}_c | = \omega^2 R = v^2 / R
(R = radius of the circle, ω = v/R angular velocity)

Momentum

\mathbf{p} = m\mathbf{v}


Force

 \sum \mathbf{F} = \frac{d\mathbf{p}}{dt} = \frac{d(m\mathbf{v})}{dt}
 \sum \mathbf{F} = m\mathbf{a} \quad\    (Constant Mass)


Impulse

 \mathbf{J} = \Delta \mathbf{p} = \int \mathbf{F} dt
 \mathbf{J} = \mathbf{F} \Delta t \quad\
   if F is constant


Moment of inertia

For a single axis of rotation: The moment of inertia for an object is the sum of the products of the mass element and the square of their distances from the axis of rotation:
I = \sum r_i^2 m_i =\int_M r^2 \mathrm{d} m = \iiint_V r^2 \rho(x,y,z) \mathrm{d} V


Angular momentum

 |L| = mvr \quad\
   if v is perpendicular to r
Vector form:
 \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I}\, \omega
(Note: I can be treated like a vector if it is diagonalized first, but it is actually a 3×3 matrix - a tensor of rank-2)
r is the radius vector.


Torque

 \sum \boldsymbol{\tau} = \frac{d\mathbf{L}}{dt}
 \sum \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F} \quad
if |r| and the sine of the angle between r and p remains constant.
 \sum \boldsymbol{\tau} = \mathbf{I} \boldsymbol{\alpha}
This one is very limited, more added later. α = dω/dt


Precession

Omega is called the precession angular speed, and is defined:
 \boldsymbol{\Omega} = \frac{wr}{I\boldsymbol{\omega}}
(Note: w is the weight of the spinning flywheel)

Energy

for m as a constant:
 \Delta E_k = \int \mathbf{F}_{\mbox{net}} \cdot d\mathbf{s} = \int \mathbf{v} \cdot d\mathbf{p} = \begin{matrix}\frac{1}{2}\end{matrix} mv^2 - \begin{matrix}\frac{1}{2}\end{matrix} m{v_0}^2 \quad\
 \Delta E_p = mg\Delta h \quad\  \,\! in field of gravity


Central force motion

\frac{d^2}{d\theta^2}\left(\frac{1}{\mathbf{r}}\right) + \frac{1}{\mathbf{r}} = -\frac{\mu\mathbf{r}^2}{\mathbf{l}^2}\mathbf{F}(\mathbf{r})


Equations of motion (constant acceleration)

These equations can be used only when acceleration is constant. If acceleration is not constant then calculus must be used.
v = v_0+at \,
s = \frac {1} {2}(v_0+v) t
s = v_0 t + \frac {1} {2} a t^2
v^2 = v_0^2 + 2 a s \,
These equations can be adapted for angular motion, where angular acceleration is constant:
 \omega _1 = \omega _0 + \alpha t \,
 \theta = \frac{1}{2}(\omega _0 + \omega _1)t
 \theta = \omega _0 t + \frac{1}{2} \alpha t^2
 \omega _1^2 = \omega _0^2 + 2\alpha\theta
 \theta = \omega _1 t - \frac{1}{2} \alpha t^2

No comments:

Post a Comment